#### PIGEONPEA WILT AND ITS MANAGEMENT: A REVIEW

PATEL,\* S. I. AND PATEL, B. M.

# COLLEGE OF AGRICULTURE S. D. AGRICULTURAL UNIVERSITY THARAD, GUJARAT, INDIA

E-mail: gujrust@gmail.com

Pigeonpea [Cajanus cajan (L.) Millspaugh] is the fifth prominent pulse crop in the world and second most important pulse crop after chickpea in India. Pigeonpea crop suffers from over 210 pathogens (83 fungi, 4 bacteria, 19 viruses and mycoplasma and 104 nematodes) reported from 58 countries (Reddy et al., 1990; Nene et al., 1996). The major diseases that assume significant importance include wilt (Fusarium udum Butler), sterility mosaic (Pigeonpea sterility mosaic virus) and phytophthora blight (Phytophthora drechsleri Tucker f. sp. cajani Kannaiyan et al.). Among these, wilt is the most serious disease causing irreversible losses and lethal damage to crop.

## The causal organism

The wilt of pigeonpea was recorded for the first time in India by Butler (1906). The causal organism described initially as *Fusarium udum* by Butler (1910), was subsequently described as *F. butleri*, *F. uncinatum*, *F. lateritium* var. *uncinatum*, *F. oxysporum* f. sp. *udum*, *F. lateritium* f. sp. *cajani* and *F. udum* f. sp. *cajani* (Vishwa Dhar *et al.*, 2005). However, the name *F. udum* was accepted as an imperfect state (Booth, 1971) because of the macro-conidia having well distinguished prominent hook. *Fusarium udum* is host specific to pigeonpea (Padwick, 1940; Subramanian, 1963; Booth, 1971).

### Cultural, Morphological and Pathogenic Variability in the Pathogen

Baldev and Amin (1974) revealed differential response of pigeonpea varieties and pathogenic races of *F. udum*. Shit and Gupta (1980) reported that seven isolates of *F. udum* from pigeonpea collected from different regions of India varied in cultural characters such as aerial mycelium, texture and their ability to sporulate. Further, they noted that isolates producing scanty mycelium were more pathogenic with no correlation between intensity of sporulation and pathogenicity and thus, suggested the existence of physiologic races of *F. oxysporum* f. sp. *udum* on the basis of pathogenic behaviour. Pawar and Mayee (1983) collected 25 isolates of *F. udum* and reported that isolates were pathogenic and distinguished into five categories on the basis of virulence. Patil (1984) reported an average size of micro-conidia measuring 9.4-12.0 x 3.1-3.3 µm while, macro-conidia measured 19.2 x 3.5-5.0 µm. The pigmentation of the culture growth of *F. udum* was mostly whitish. Reddy and Chaudhary (1985) studied the strain variation in six isolates of *F. udum* and noted that five isolates were fast growing. All the isolates produced moderate to excellent sporulation. Among the six isolates, macro-conidia in two isolates were bigger in size with 2-5 septa. Evaluations of 71 isolates of pigeonpea wilt pathogen

\_\_\_\_\_ 400

revealed great deal of variation and were categorized into seven groups on the basis of colony characteristics, growth rate, sporulation, dry mass and pathogenic virulence when seven cultivars were inoculated (Kotasthane et al., 1988). Gaur and Sharma (1989) reported that F. udum isolates differed in their cultural and morphological characters with marked diversity in virulence towards susceptible variety T-21. Rajendra and Patil (1992) observed variation in micro- and macro-conidia in different isolates of F. udum. Micro-conidia measured from 3-4 X 1-2 µm to 12-13 X 4-5 µm and macro-conidia measured from 7-9 X 3-4 µm to 37-39 X 3-4 µm. The pigmentation was mostly whitish except few isolates having pinkish colour. Pathogenicity of these isolates on ten pigeonpea cultivars exhibited pathogenic variation (Rajendra and Patil, 1993). Okiror and Kimani (1997) verified diversity in F. udum in Kenya using several isolates. Das and Sengupta (1998) reported that although variability existed in the cultural characteristic of test isolates, some features like abundant production of micro-conidia and formation of chlamydospores were common. Joshi (2000) concluded that the pathogenic races of F. udum of Nepalgunj and Sarlahi were two distinct types as they showed different types of reaction to pigeonpea differential lines. Madhukeshwara and Sheshadri (2001) described six isolates of F. udum with distinct colony characteristics, pigmentation and sporulation. The size of micro- and macro-conidia varied from 18-21 X 4-5 µm and 23-26 X 4-5 µm, respectively. Pigmentation was noticed from white to dusky red.

The 56 isolates of F. udum collected from various districts of Kenya showed a high level of variability in aerial mycelia growth, pigmentation and colony diameter. The aggressiveness of 17 isolates on seven pigeonpea varieties varied and five aggressive groups were reported with no relationship among cultural characteristics and aggressiveness (Kiprop  $et\ al.$ , 2002). Shashi Mishra and Vishwa Dhar (2003) characterized 17 isolates of F. udum on the basis of variation in size and septation of macro-conidia in to three group's viz., smaller conidia, medium conidia and large conidia. They also observed that isolates with large conidia and more septation were most virulent causing 100 per cent mortality; medium conidia were moderately virulent causing 76.5 per cent wilting and smaller conidia were less virulent causing 55.5 per cent wilting in inoculated plants. Forty-eight isolates of F. udum studied for their cultural, morphological and pathogenic variability revealed that 13 isolates were fluffy, 17 were moderately fluffy, 6 were appressed and 12 were intermediary types. Pigmentation in substratum also varied appreciably. The isolates were grouped in different five categories based on length of macro-conidia. Pathogenicity test of these isolates on a susceptible cultivar Bahar revealed that 32 isolates were highly virulent (> 75 % wilt), 9 moderately virulent (51-75 % wilt) and 7 were weakly virulent (up to 50 % wilt) (Vishwa Dhar  $et\ al.$ , 2007).

The results of 195 isolates of F. udum revealed that 135 were highly pathogenic (> 50 % wilt), 33 moderately pathogenic (30-50 % wilt) and 32 were weak pathogenic (<30 % wilt) (Anonymous, 2007-08). Variation with respect to mycelial colour, pigmentation and colony characters among 41 isolates of F. udum collected from different parts of India were reported (Mahesh  $et\ al.$ , 2010). Shashi Tiwari and Vishwa Dhar (2011) observed wide range of cultural, morphological and pathogenic variability among 51 isolates and noted differential response to 10 genotypes and described them as new variants of F. udum.

## **Symptomatology**

The disease appears in early stage of plant growth (Nene *et al.*, 1979) as gradual or sudden withering and drying. Butler (1906) and Kotasthane and Gupta (1981) reported association of flowering with wilt incidence.

## Management

### (i) Host Plant Resistance

Observations on resistance of pigeonpea varieties to wilt disease was reported earlier by Butler (1908), who observed that few strains of pigeonpea showed promise and were found to be somewhat resistant to wilt disease. Ravishanker (1936) described EB-38, a strain from CP type 9 possessing the greatest resistance to wilt disease of pigeonpea. Field tests conducted at different locations indicated that NP (WR)-15, apart from maintaining high yield, had a high degree of wilt resistance (Deshpande et al., 1963). Subramanian (1963) reported NP-15 as least susceptible to wilt since no spores were produced due to lack of proper substrate in the root system or the action of some inhibitory substance in the xylem in that variety. Screening of 58 varieties of Cajanus cajan for resistance to Fusarium udum revealed that none was resistant, but nine were moderately resistant (Mukherjee et al., 1971). Raut and Bhombe (1971) documented twelve selections (Seven Bori-11 selections, Tuljapur 455, Latur 466-I, Latur 467-II, DT-230 and MXK-132) showed considerable degree of resistance to wilt. Bhargava (1975) reported pigeonpea varieties Kanke-9 and Kanke-3 as resistant and moderately resistant to wilt disease, respectively. Singh and Mishra (1976) described that pigeonpea varieties viz., C-1, C-28, C-36, F-18, NP (WR)-15, NP-41 and T-17, which were earlier described as resistant or tolerant to wilt have proved susceptible, however, lines viz., Bori-192-12-5-1-2 and Bori-192-15-2-2-11-42 were moderately resistant. Murthy and Bhagyaraj (1980) reported that total alkaloids and flavanols were more concentrated in the resistant pigeonpea cv. C-11-6 than in the susceptible cv. TS-136-1. Among the 90 elite and diverse Cajanus cajan lines planted in a plot having inoculum of Fusarium udum, 14 were reported as resistant. The most promising line Purple-1 (Malaviya Arhar-1) showed multiple resistant reaction for wilt and sterility mosaic (Venkateswaarlu et al., 1980). Evaluation of highly susceptible pigeonpea varieties viz., AS-3, HY-2 and JA-7 belonging to early, medium and late maturity groups indicated increased early mortality due to wilting in AS-3 compared to HY-2 and JA-7 (Kotasthane and Gupta, 1981). Nene and Kannaiyan (1982) screened more than 11000 entries of Cajanus cajan and reported 33 as resistant to F. udum. Lines ICP 7182, ICP 7336, ICP 8863, ICP 8869 and BDN 1 had less than 5 per cent incidence compared with more than 90 per cent incidence in the susceptible control ICP 2376 (Zote et al., 1983). Evaluation of 100 lines of pigeonpea for resistance to wilt revealed that ICP 8863 was the most resistant and suitable for use in breeding programme (Haque et al., 1984; Konda et al., 1986). Dasgupta and Sengupta (1988) studied the reaction of 21 Cajanus cajan lines for resistance to F. udum and reported that 6 lines viz., ICP 8863, ICP 10957, ICP 10958, ICP 11290, ICP 11292 and ICP 11294 showed no wilt symptoms, 4 had low (5-25 %) and 5 had very high (75-100 %) wilt incidence. Among the 61 promising lines of pigeonpea evaluated in a wilt sick plot, 2 lines viz., GAUT 82-9 and GAUT 82-74, were free from infection (Patel et al., 1988). Screening of 950 genotypes of pigeonpea for resistance to F. udum revealed that none was free from the disease, but 19 had less than 10 per cent wilt incidence, which were graded as resistant (Agrawal et al., 1991). Rajendra and Patil (1993) revealed that out of 31 pigeonpea cultivars screened, 16 cultivars were

resistant to wilt, while 14 were observed moderately resistant. The cultivar BWR 369 recorded the highest degree of resistance (2.15 %) to wilt as compared to susceptible check N-290-21 (61.80 %). Evaluation of 40 cultivars and lines of pigeonpea to wilt caused by F. udum revealed that lines ICP 8863, ICP 8864, ICP 7942 and ICP 11295 were resistant, while remaining lines varied in their susceptibility to the disease (Chavan et al., 1995). Reddy and Raju (1996) recorded only 7 per cent wilt incidence in resistant cv. ICP 8863 compared to 83 per cent in susceptible cv. ICP 2376. A short duration genetic male sterile line ICPM 93003 was reported as resistant to wilt and sterility mosaic and could be used in developing short duration disease resistant pigeonpea hybrid. (Saxena et al., 1998). Chaudhary and Kumar (2000) reported that xylem vessels and vascular bundle of susceptible genotypes were significantly wider and roots were significantly thicker than genotypes that were resistant to F. udum. The research efforts of NARS in association with the ICRISAT resulted in identification of resistance sources from which several cultivars were evolved (Vishwa Dhar and Chaudhary, 2001). A total of 216 late maturing pigeonpea germplasm were screened for multiple disease resistance and reported that KAWR-1, KAWR-2, KAWR-7, KAWR-16, KAWR-45 and KAWR-73 were resistant to wilt caused by F. udum (Mishra et al., 2003). Screening of 226 pigeonpea genotypes to assess their resistance reaction elucidated that 105 genotypes were resistant (0-10%) wilt), 33 genotypes were moderately resistant (10-30%) wilt) and 88 genotypes were susceptible (> 30 % wilt) (Madhukeshwara et al. 2004). Evaluation of 46 pigeonpea genotypes in artificially infected plots by growing the susceptible hedge of pigeonpea (ICP 8863) revealed that PT 25-2, PI-25, BSMR-841, BSMR-23, IPA-40 and KPL-43 were resistant to fusarium wilt and sterility mosaic (Mandhare et al. 2005). The study on evaluation of new elite pigeonpea germplasm against wilt in three different countries using wilt sick plots revealed that the genotype ICEAP 00040 consistently showed a high (< 20.0 %) level of resistance to the disease in all the three countries compared to 87.5, 92.0 and 90.9 per cent wilt score for the susceptible genotype ICEAP 00068 in Kenya, Malawi and Tanzania, respectively (Gwata et al., 2006).

#### (ii) Biological control

Sumitha and Gaikwad (1995) reported that Trichoderma harzianum showed maximum zone of inhibition and inhibited spore germination completely at 8.42 X 10<sup>7</sup> spores per ml. They further noted that this antagonist did not show any adverse effect on germination of pigeonpea seeds with increased shoot and root length. Bhatnagar (1996) studied antagonistic activity of three Trichoderma species against F. udum at different temperatures, pH and C/N ratios and reported that all the isolates were almost equally efficient antagonists and showed maximum antagonistic potential at 35 + 2 °C temperature and pH 6.5. Among the six isolates of Trichoderma spp. evaluated against F. udum by adopting two delivery system i.e. seed treatment and soil application, seed treatment with Trichoderma viride isolate H reduced the F. udum propagules from 19.4 X 10<sup>2</sup> to 2.5 X 10<sup>2</sup> cfu/g of soil, whereas T. hamatum reduced F. udum propagules from 10.9 X 10<sup>2</sup> to 4.9 X 10<sup>2</sup> cfu/g of soil and wilt incidence ranged from 7.3 to 15.5 per cent after the 35<sup>th</sup> day of inoculation (Somasekhara et al., 1996). Bidari and Gundappagal (1997) reported that seed treatment with Trichoderma viride to resistant cultivar was effective in integrated management of pigeonpea wilt under dryland cultivation. Pandey and Upadhyay (1997) evaluated several bio-agents and reported that a volatile compound produced by T. viride was most fungitoxic to wilt pathogen followed by Gliocladium virens. They further observed that non-volatile antibiotics of T. viride was highly toxic followed by T. harzianum,

T. viride, T. harzianum and T. koningii were effective among the twelve Trichoderma isolates evaluated against F. udum (Somasekhara et al., 1998). Biswas (1999) concluded that T<sub>1</sub> isolate of T. harzianum was effective antagonist among nine isolates evaluated against F. oxysporum f. sp. udum. Biswas and Das (1999) reported that T. harzianum was most effective antagonist followed by T. hamatum, T. longiconis and T. koningii among the five species of Trichoderma evaluated under in vitro dual culture against F. udum. They further noted that seed treatment of pigeonpea with T. harzianum spores failed to reduce wilt, whereas augmentation of soil with T. harzianum in maize meal: sand medium @ 40-60 g/kg soil resulted in a significant reduction of wilt incidence up to 89 per cent. Inhibition in growth of F. udum was highest with T. viride 1 (38.3 %) followed by T. viride 2 (35.3 %) (Singh et al., 2002). Soil application of T. harzianum was more effective than seed treatment for disease suppression, thus, suggested the need to augment soil application of T. harzianum for obtaining effective control of pigeonpea wilt (Prasad et al., 2002). Gholve and Kurundkar (2002) enumerated the compatibility of T. viride with eleven local isolates of Pseudomonas fluorescens and proved its usefulness in managing pigeonpea wilt. Local isolate of T. harzianum (L1) was the most promising and showed maximum inhibitory effect on mycelial growth (88.69 %) of F. udum as well as lowest incidence (20.37 %) of wilt in pots where seed treatment was given (Jayalakshmi et al., 2003). Singh and Singh (2003) reported highest reduction (26.1 %) in the radial growth of F. udum with T. harzianum followed by other bio-agents tested. Comparison of different products of biological control agents, Trichoderma spp. against wilt of pigeonpea revealed that all the products reduced wilt incidence, however, seed treatment with phule Trichokill at 8 g per kg seed recorded the highest seed germination and lowest wilt incidence (Sawant et al., 2003). Biointensive integrated pest management package including seed treatment of Trichoderma @ 4 g per kg seed reduced the incidence of pigeonpea wilt (Agrawal et al., 2003). Khan and Khan (2003) observed differential response of T. harzianum, T. virens, Pseudomonas fluorescens and Bacillus subtilis in controlling fusarium wilt of pigeonpea and recorded decreased wilt incidence ranging from 17 to 48 per cent. Chaudhary and Prajapati (2004) evaluated six biological control agents against F. udum and reported that maximum colony growth inhibition in dual culture was obtained with Gliocladium virens (Pantnagar) and Trichoderma viride (Coimbatore). They also noticed that cultural filtrate of all the six biological control agents inhibited colony growth of F. udum by 18.1-53.6 % at different concentration. Seeds treated with dry powder of Trichoderma viride at 4 g/kg before sowing significantly reduced wilt disease in all the cultivars of pigeonpea compared to untreated control (Mahalinga et al., 2004).

Mandhare and Suryawanshi (2005) reported that application of *Trichoderma* spp. as seed and soil application was found effective showing 63.25 per cent wilt reduction. Roy and Sitansu (2005) documented that among the mutant isolates of *T. harzianum*, 50Th<sub>3</sub>II (36.51 %) and 125Th<sub>4</sub>I (33.86 %) significantly reduced the wilt disease over control in non-sterilized soil, while 75Th<sub>4</sub>IV (33.33 %) was most effective in sterilized soil. Three bioagents *viz.,Trichoderma viride*, *Trichoderma harzianum* and *Gliocladium virens* varied in their efficacy in relation to ten isolates of *F. udum*. After 96 hrs of incubation, the per cent reduction in radial growth of ten isolates ranged between 35.5 - 54.8 against *T. viride*, 36.4 - 54.7 against *T. harzianum* and 36.4 - 57.3 against *G. virens* (Vishwa Dhar *et al.*, 2006). Seed treatment with *Trichoderma harzianum* @ 4 g/kg seed had significantly lower wilt incidence of 52.7 and 52.1 % compared to control (53.9 and 53.3 %) during first and second year, respectively (Gade *et al.*, 2007). Shukla and Chaudhary (2007) studied the efficacy of 30 different

Trichoderma isolates against F. udum and reported that two isolates showed highest colony growth reduction of 65.5 to 67.2 per cent, seven between 50 to 60 per cent and 21 isolates between 41-50 per cent. They further observed that eleven isolates reduced conidia production by >90 per cent. The culture filtrates of Trichoderma spp. also reduced > 90 per cent colony growth of F. udum. Hukma Ram and Pandey (2011) reported that T. viride and Pseudomonas fluorescens significantly reduced the growth of F. udum.

## (iii)Use of Organic Amendments

Chauhan (1963) noted significant reduction in gram wilt incidence by amending the soil with de-oiledcakes of groundnut, til and mustard. Amendment of three oilcakes viz., margosa, groundnut and mustard in soils infested with different cultures of Fusarium revealed that high dose of mustard and groundnut cake were inhibitory (Singh and Singh, 1970). Singh and Singh (1980) described that amendment of natural soil with autoclaved Azadirachta indica or Ricinus communis oilcakes, rice husk or saw dust with or without supplemental N greatly enhanced lytic effect of the fungus. Organic amendments in the form of oilcakes, crop residues, green manures and farm vard manure significantly reduced soil borne plant pathogens (Kotasthane and Gupta, 1986). Dasgupta and Sengupta (1989) reported that amendment with green manure (Sesbania aculeata) and de-oiled cakes (mustard and neem) reduced F. udum population and number of wilted plants of red gram. Chakrabarti and Sen (1991) used mustard cake (2 %), groundnut cake (1 %), margosa cake (2 %) and saw dust (1 %) as soil amendment for management of muskmelon wilt incited by F. solani. They reported that all the four organic amendments inhibited mycelial growth of F. solani under in vitro conditions. Further, they also noted that mustard cake reduced wilt incidence and pathogen population by 65 and 17 per cent, respectively. Tyagi and Alam (1995) evaluated the efficacy of deoiled cakes of neem, castor, mustard and duan (Eruca sativa) against F. oxysporum f. sp. ciceri and reported that all the cakes significantly reduced the disease. Divora and Khandar (1995) reported that mustard cake followed by groundnut cake was the most effective organic amendment for managing cumin wilt caused by F. oxysporum f. sp. cumini. Rai and Singh (1995) tested different oil cakes viz., neem, mustard, mahua, coconut, linseed and sesamum at concentrations of 0.25, 0.5, 1.0 and 2.0 per cent against radial growth of F. udum and reported that neem, mustard and mahua cakes were most effective in reducing fungal growth. Further, they also reported that neem oilcake was most effective in controlling wilt incidence. Raj and Kapoor (1996) assessed groundnut, mustard, sesame and cotton seed oil cakes for their ability to reduce wilt of tomatoes caused by F. oxysporum f. sp. lycopersici and reported that groundnut and mustard oilcakes at 2 % concentration in soil (w/w) were most effective in reducing the pathogen population and disease incidence. However, groundnut oilcake was superior to mustard as it recorded higher reduction in disease index (77.1 %). Goudar and Kulkarni (1998) conducted pot experiment to determine the effect of organic amendments viz., compost, Farm Yard Manure, groundnut oilcake and neem cake. They concluded that per cent plants affected by wilt were significantly less in the soil amended with different organic amendments (27.5 % in neem cake to 62.5 % in groundnut oilcake) compared to control (75.0 %). Padmodaya and Reddy (1999) reported that FYM and Neem cake were most effective against F. oxysporum f. sp. lycopersici causing seedling disease of tomato under glass house conditions. F. udum propagules were significantly decreased from 25.3 to 2.5 X 10<sup>4</sup> cfu per g in 35 days by *Pongamia sinensis* with wilt incidence of 6.6 and 20 per cent in unsterilized and sterilized soil, respectively compared to 93.3

per cent in control. The population of Trichoderma viride was significantly increased in tea waste and pongamia cake amended soil (Somasekhara et al., 2000). Mayur and Deshmukh (2003) evaluated the efficacy of de-oiled mustard cake, groundnut cake and farm yard manure against F. oxysporum f. sp. ciceri and reported that all the soil amendments significantly reduced wilt incidence. Mori (2003) observed that mustard cake was most effective in inhibiting the radial growth of F. oxysporum f. sp. momordicae. Antifungal effects of organic amendments against F. oxysporum f. sp. cubense revealed that neem cake was most inhibitory to the mycelial growth of the pathogen followed by groundnut cake. In glass house experiment also, neem cake exhibited maximum reduction in the rhizosphere population of the pathogen and vascular discolouration index (Sarvanan et al., 2004). Different oil cakes viz. mustard, sesamum and cotton were studied along with vermicompost and farm yard manure for their effect on F. oxysporum causing wilt of fenugreek. The results indicated that vermicompost was significantly superior in reducing the disease incidence (Mathur et al., 2006). The combined effect of biological control agents T. harzianum and T. viride with aqueous neem leaf Alternaria solani, Fusarium oxysporum and Colletotrichum gloeosporioides suggested that T. harzianum along with 10 and 50 per cent neem leaf extract resulted in 100 per cent inhibition of the growth of the test pathogens followed by T. viride with 50 per cent extract (Sharma et al., 2008). Barakat (2008) reported that combination of T. harzianum and sheep manure reduced the total fungal population. He further observed that sheep manure alone was less effective in reducing bean damping-off and improving bean growth than a combination of both manure and T. harzianum isolate Jn14.

#### REFERENCES

- Agrawal, S. C., Gupta R. K. and Prasad, K. V. K. (1991). Resistance in pigeonpea against Fusarium wilt. *Indian J. Pulses Res.*, **4**: 120-121.
- Agrawal, S. C., Singh, K. J. and Tripathi, A.K. (2003). Integrated pests management in pigeonpea (*Cajanus cajan*). *Indian J. Agric. Sci.*, **73**: 291-293.
- Anonymous (2007-08). Annual Report (2007-08). Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, India, pp. 33.
- Baldev, B. and Amin, K. S. (1974). Studies on the existence of races in *F. udum* causing wilt of *Cajanus cajan. SABRAO J*, **6**: 201-205.
- Barakat R. M. (2008). The effect of *Trichodermaharzianum* in combination with organic amendment on soil suppressiveness to *Rhizoctonia solani*. *Phytopathologia Mediterranea*, **47**: 11-19.
- Bhargava, R. N. (1975). Two new varieties of arhar for Bihar. *Indian Farming*, 25: 23.
- Bhatnagar, H. (1996). Influence of environmental conditions on antagonistic activity of *Trichoderma* spp. against *Fusarium udum*. *Indian J. Mycol. Pl. Pathol.*, **26**: 58-63.
- Bidari, V. B. and Gundappagal, R. C. (1997). *Trichoderma viride* in the integrated management of pigeonpea wilt under dryland cultivation. *Advances in Agril. Res. India*, **7**: 65-69.

- Biswas, K. K. (1999). Screening of isolates of *Trichoderma harzianum* Rifai for their relative biocontrol efficacy against *Fusarium oxysporum* f. sp. *udum* and *Rhizoctonia solani* Kuhn. *Ann. Pl. Prot. Sci.*, **7**:125-130.
- Biswas, K. K. and Das, N. D. (1999). Biological control of pigeonpea wilt caused by *Fusarium udum* with *Trichoderma* spp. *Ann. Pl. Prot. Sci.*, **7**:46-50.
- Booth, C. (1971). The genus *Fusarium*. Common Wealth Mycological Institute, Kew, Surrey, U.K., 114 p.
- Butler, E. J. (1906). The wilt disease of pigeonpea and pepper. Agril. J. India, 1:25-36.
- Butler, E. J. (1908). Selection of pigeonpea for wilt disease. *Agril. J. India*, **3**: 182-183.
- Butler, E. J. (1910). The wilt disease of pigeonpea and parasitism of *Neocosmospora vasinfecta* Smith. Memories of the Department of Agriculture in India, *Botanical Series*, **2**: 1-64.
- Chakrabarty, S. K. and Sen, B. (1991). Suppression of fusarium wilt of muskmelon by organic soil amendments. *Indian Phytopath.*, **44**: 476-479.
- Chaudhary, R. G. and Kumar, K. (2000). Role of width of xylem and root vascular bundles of pigeonpea in resistance to wilt. *Ann. Pl. Prot. Sci.*, **8**: 102-104.
- Chaudhary, R. G. and Prajapati, R. K. (2004). Comparative efficacy of fungal biological agents against *Fusarium udum*. *Ann. Pl. Prot. Sci.*, **12**: 75-79.
- Chauhan, S. K. (1963). Incidence of *Fusarium* wilt of gram in oilcakes amended soil. *Agra Univ. Res.*, **12**: 143-146.
- Chavan, P. N., Gahukar, K. B. and Raut, B. T. (1995). Reaction of pigeonpea cultivars/lines to Fusarium wilt in wilt sick plot. *PKV Res. J.*, **19**:200-201.
- Das, S. K. and Sengupta, P. K. (1998). Variability in *Fusarium udum*, the causal agent of wilt of pigeonpea. *J. Mycopath. Res.*, **36**: 7-11.
- Dasgupta, A. and Sengupta, P. K. (1988). Reaction of pigeonpea (*Cajanus cajan*) lines to wilt pathogen, *Fusarium udum. Indian J. Agric. Sci.*, **58**: 546-548.
- Dasgupta, A. and Sengupta, P. K. (1989). Effect of different soil amendments on wilt of pigeonpea caused by *Fusarium udum*. *Beitrage Zur tropischen landwirtshaft and vetrinormadizin*, **27**: 341-345.
- Deshpande, R. B., Jeswani, L. M. and Joshi, A. B. (1963). Breeding of wilt resistant varieties of pigeonpea. *Indian J. Genet. Pl. Breed.*, **23**: 58-63.

- Diyora, P. K. and Khandar, R. R. (1995). Management of wilt of cumin by organic amendments. *J. Spices and Aromatic Crops*, **4** : 80-81.
- Gade, R. M., Zote, K. K. and Mayee, C. D. (2007). Integrated management of pigeonpea wilt using fungicide and bioagents. *Indian Phytopath.*, **60**: 24-30.
- Gaur, V. K. and Sharma, L. C. (1989). Prevalence of Fusarium wilt of pigeonpea in Rajasthan. *Indian Phytopath.*, **42**: 468.
- Gholve, V. M. and Kurundkar, B. P. (2002). Biocontrol of pigeonpea wilt with *Pseudomonas fluorescens* and *Trichoderma viride*. *Indian J. Pulses Res.*, **15**: 174-176.
- Goudar, S. B. and Kulkarni, S. (1998). Effect of organic amendments on *Fusarium udum* Butler-the causal agent of wilt of pigeonpea. *Karnataka J. Agric. Sci.*, **11**:690-692.
- Gwata, E. T., Silim, S. N. and Mgonja, M. (2006). Impact of a new source of resistance to fusarium wilt in pigeonpea. *J. Phytopath.*, **154** : 62.
- Haque, M. F., Jha, D. K., Mukherjee, A. K., Maesen, L. J. G. Van Der and Kasnnaiyan, J. (1984). Evaluation of ICRISAT germplasm for wilt incidence in the plateau region of Chota Nagpur in India. *ICPN*, **3**: 36-37.
- Hukma Ram and R. N. Pandey (2011). Efficacy of biocontrol agents and fungicides in the management of wilt of pigeonpea. *Indian Phytopath.*, **64 (3)**: 269-271.
- Jayalakshmi, S. K., Sreeramulu, K. and Benigi, V. I. (2003). Efficacy of *Trichoderma* spp. against pigeonpea wilt caused by *Fusarium udum* Butler. *J. Biol. Control*, **17**: 75-78.
- Joshi, S. (2000). Pathogenic variability in pigeonpea wilt pathogen *Fusarium udum* Butler in Nepal. *Nepal Agric. Res. J.*, **4 &5** : 64-65.
- Khan, M. R. and Khan, S. M. (2003). Biocontrol of fusarium wilt of pigeonpea by certain fungal and bacterial bioagents. Abstract: *National Symposium on Pulses for Crop Diversification and Natural Resource Management, Kanpur, December, 20-22.*
- Kiprop, E. K., Baudoin, J. P., Mwang-ombe, A. W., Kimani, P. M., Mergeai, G. and Maquet, A. (2002). Characterization of Kenyan isolates of *Fusarium udum* from pigeonpea [*Cajanus cajan* (L.) Millsp.] by cultural characteristics, aggressiveness and AFLP analysis. *Journal of Phytopath.*, **150**: 517-525.
- Konda, C. R., Parameswarappa, R. and Rao, T. S. (1986). Pigeonpea ICP 8863-A boon to Fusarium wilt endemic areas of Karnataka. *ICPN*, **5**:36-37.

- Kotasthane, S. R. and Gupta, O. (1981). Trend of wilting in pigeonpea varieties of variable maturity. *An abstract of paper presented in third International Symposium of Plant Pathology* held during December 14-18, 1981, New Delhi, India, pp. 161-162.
- Kotasthane, S. R. and Gupta, O. (1986). Management of pigeonpea wilt disease by soil amendment. In: *Management of Soil Borne Diseases of Crop Plants*, CPPS, TNAU, Coimbatore, pp. 23.
- Kotasthane, S. R., Khare, M. N. and Gupta, O. (1988). Strain variation in *Fusarium udum* in Madhya Pradesh, India. *ICPN.*, **7**:22-25.
- Madhukeshwara, S. S. and Sheshadri, V. S. (2001). Studies on the variation in the growth phase of different isolates of *Fusarium udum* Butler. *Curr. Res.*, **30**: 157-158.
- Madhukeshwara, S. S., Babu, H. N. R., Sheshadri, V. S. and. and Mantur, S. G., (2004). Screening of pigeonpea genotypes for *Fusarium* wilt resistance. *Environment and Ecology*, **22**: 816-819.
- Mahalinga, D. M., Jayalaksmi, S. K. and Gangadhara, G. C. (2004). Management of pigeonpea wilt through integration of bio-agent and resistant source. *Plant Dis. Res.*, **19**: 181-182.
- Mahesh, M., Saifulla, M., Prasad, P. S. and Sreenivasa, S. (2010). Studies on cultural variability of *Fusarium udum* isolates in India. *International J. Sci. and Nature*, **1(2)**:219-225.
- Mandhare, V. K. and Suryawanshi, A. V. (2005). Application of *Trichoderma* species against pigeonpea wilt. *JNKVV Research Journal*, **38**: 99-100.
- Mandhare, V. K., Suryawanshi, A. V., Tagad, L. N. and Jamadgani, B. M. (2005). Field reaction of pigeonpea cultivars to fusarium wilt and sterility mosaic disease in Maharastra, India. *JNKVV Research Journal* **38**: 90-91.
- Mathur, K., Bansal, R. K. and Gurjar, R. B. S. (2006). Organic amendment of fusarium wilt of fenugreek (*Trigonella foenum-graecum* L.)-A seed spice. *J. Mycol. Pl. Pathol.*, **36**: 94-95.
- Mayur, D. and Deshmukh, V. V. (2003). Effect of bio-agents and soil amendments on chickpea wilt caused by *Fusarium oxysporum* f. sp. *ciceri. Res. on Crops*, **4**: 141-143.
- Mishra, A. N., Prasad, S. N. and Mishra, D. K. (2003). Multiple disease resistance screening of late maturing pigeonpea. *Annals of Plant Protection Sci.*, **11**: 392-393.
- Mori, P. K. (2003). Investigations on *fusarium* wilt of bitter gourd (*Momordica charantia* L.) and its management. M. Sc. (Agri.) thesis (un-published) submitted to Gujarat Agricultural University, Junagadh, pp. 97.
- Mukherjee, D., De, T. K. and Paruli, N. R. (1971). A note on the screening of the arhar against wilt disease. *Indian Phytopath.*, **24**: 598-601.

\_\_\_\_\_ 409

- Murthy, G. S. and Bhagyaraj, D. J. (1980). Flavanol and alkaloid content of pigeonpea cultivars resistant and susceptible to *Fusarium udum*. *Indian Phytopath.*, **33**: 633-634.
- Nene, Y. L. and Kannaiyan, J. (1982). Screening of pigeonpea for resistance to pigeonpea wilt. *Plant Dis.*, **66**: 306-307.
- Nene, Y. L., Kannaiyan, J., Haware, M. P. and Reddy, M. V. (1979). Review of work done at ICRISAT on soil borne diseases of pigeonpea and chickpea. In: *Proceedings of the Consultant Group Discussion on the Resistance to Soil borne Diseases of Legumes*, ICRISAT, Patancheru, Andhra Pradesh, India, pp.3
- Nene, Y. L., Sheeila, V. K. and Sharma, S. B. (1996). A world list of chickpea and pigeonpea pathogens. Fifth Edition, ICRISAT, Patancheru, Andhra Pradesh, India, pp. 19-20.
- Okiror, M. A. and Kimani, P. M. (1997). Pathogenic variation of *Fusarium udum* of pigeonpea. *Indian J. Genet.*, **57**: 186-192.
- Padmodaya, B. and Reddy, H. R. (1999). Effect of organic amendments on seedling disease of tomato caused by *F. oxysporum* f. sp. *lycopersici .J. Mycol. Pl. Pathol.*, **29**: 38-41.
- Padwick, G. W. (1940). "Genus Fusarium 5: Fusarium udum Butler, F. vasinfectum Atk. And F. lateritium var. uncinatum W.R. Indian J. Agric. Sci., 10: 863.
- Pandey, K. K. and Upadhyay, J. P. (1997). Selection of potential biocontrol agents based on production of volatile and non-volatile antibiotics. *Veg. Sci.*, **24**: 144-146.
- Patel, J. A., Nafde, S. D., Patel, D. B., Zaveri, P. P. and Pathak, A.R. (1988). Field screening of pigeonpea lines for resistance to wilt at Vadodara, Gujarat, India. *ICPN*, 7: 27-28.
- Patil, P. Y. (1984). Study on pigeonpea wilt. Ph. D. thesis, Mahatma Phule Agricultural University, Rahuri, India, pp. 125-131.
- Pawar, N. B. and Mayee, C. D. (1983). Virulence differences in *Fusarium udum* isolates from Maharashtra State. *ICPN*, **2**: 41-42.
- Prasad, R. D., Rangeshwaran, R., Hegde, S. V. and Anuroop, C. P. (2002). Effect of soil and seed application of *Trichoderma harzianum* on pigeonpea wilt caused by *Fusarium udum* under field conditions. *Crop Protection*, **21**: 293-297.
- Rai, P. K. and Singh, K. P. (1995). Efficacy of certain oilcake amendments on *Heterodera cajani*, *Fusarium udum* and associated wilt of pigeonpea. *International J. Tropical Plant Dis.*, **13**: 213-219.

- Raj, H. and Kapoor, I. J. (1996). Effect of oil cake amendment of soil on tomato wilt caused by *Fusarium oxysporum* f. sp. *lycopersici. Indian Phytopath.*, **49**: 355-61.
- Rajendra, M. M. and Patil, P. L. (1992). Morphological, cultural and physiological variation in *Fusarium udum* Butler. *J. Maharastra Agric. Univ.*, **17**: 465-467.
- Rajendra, M. M. and Patil, P. L. (1993). Reaction of some pigeonpea cultivars to *Fusarium* wilt. *J. Maharastra Agric. Univ.*, **18**: 116-117.
- Raut, N. K. and Bhombe, B. B. (1971). A review of the work of selection of tur varieties resistant to *Fusarium* wilt at college of agriculture, Parbhani, Maharastra. *Magazine, College of Agriculture, Parbhani* 12: 37-42.
- Ravishanker (1936). Isolation of wilt resistant tur. *Nagpur Agricultural College Magazine* **10** : 162-167.
- Reddy, M. V. and Raju, T. N. (1996).Infection and colonization of pigeonpea genotypes with different degrees of susceptibility to wilt by *Fusarium udum*. *Indian Phytopath.*, **49**: 384-386.
- Reddy, M. V., Sharma, S. B. and Nene, Y. L. (1990). Pigeonpea: Disease management. In: *The Pigeonpea* (Eds. Y. L. Nene, S. D. Hall and V. K. Sheila), CAB International, Wallingford, U.K., 303-347 pp.
- Reddy, N. P. E. and Chaudhary, K. C. B. (1985). Variation in *Fusarium udum. Indian Phytopath.*, **38**: 172-173.
- Roy, A. and Sitansu, P. (2005). Biological control potential of some mutants of *Trichoderma harzianum* and *Gliocladium virens* against wilt of pigeonpea. *J. Interacademicia*, **9**: 494-497.
- Sarvanan, T., Muthusamy, M., Loganathan, M. and Prabakar, K. (2004). Antifungal effects of organic amendments against *fusarium* wilt pathogen in banana. *Madras Agric. J.*, **91**: 526-529.
- Sawant, D. M., Kolase, S. V. and Bachkar, C. B. (2003). Efficacy of bio-control agents against wilt of pigeonpea. *J. Maharastra Agric. Univ.*, **28**: 303-304.
- Saxena, K. B., Kumar, R. V., Reddy, M. V. and Singh, L. (1998). Registration of ICPM 93003, a short duration wilt and sterility mosaic disease resistant genetic male sterile parental line of pigeonpea. *Crop Sci.*, **38**: 577.
- Sharma, A., Sharma, R. and Paul, M. (2008). Suppression of soil borne pathogens through fungal antagonists with *Azadirachta indica* as a career. *Annals of Plant Protection Sci.*, **16**:

- Shashi Mishra and Vishwa Dhar (2003). Comparative conidial morphology and virulence of *Fusarium udum* from different pigeonpea varieties. *Farm Sci. J.* **12**: 132-134.
- Shashi Tiwari and Vishwa Dhar (2011). Prevalence of new variant of *Fusarium udum*, the incitant of pigeonpea wilt. *Indian Phytopath.*, **58**: 332-334.
- Shit, S. K. and Gupta, P. K. S. (1980). Pathogenic and enzymatic variation in *Fusarium oxysporum* f. sp. *udum. Indian J. Microbiol.*, **20**: 46-48.
- Shukla, N. and Chaudhary, R. G. (2007). Reduction of inoculums potential of *Fusarium udum* by *Trichoderma* spp. *Abstract of Paper presented during National Symposium on "Plant Pathogens: Exploitation and Management"* at R. D. University, Jabalpur (M.P.), India during January 16-18, 2007. *Indian Phytopath.*, **60**: 392.
- Singh, D. V. and Mishra, A. N. (1976). Search of wilt resistant varieties of red gram in Uttar Pradesh. *Indian J. Mycol. Pl. Pathol.*, **6**:89.
- Singh, N. and Singh, R. S. (1980). Lysis of *Fusarium oxysporum* f. sp. *udum* caused by soil amended with organic matter. *Indian J. Mycol. Pl. Pathol.*, **10** : 146-150.
- Singh, R. S. and Singh, N. (1970). Effect of oilcake amendment of soil on population of some wilt causing species of *Fusarium*. *Phytopathologische Zeitschrift*, **26**: 160-167.
- Singh, S. K. and Singh, R. H. (2003). Effect of culture filtrate of bio-agents and bio-pesticides on *Fusarium udum*. *Ann. Pl. Prot. Sci.*, **11**: 387-388.
- Singh, S. K., Singh, R. H. and Dutta, S. (2002). Integrated management of pigeonpea wilt by biotic agents and bio-pesticides. *Ann. Pl. Prot. Sci.*, **10**: 323-326.
- Somasekhara, Y. M., Anilkumar, T. B. and Siddaramaiah, A. L. (1996). Bio-control of pigeonpea [Cajanus cajan (L.) Millsp.] wilt (Fusarium udum Butler). Mysore J. Agric. Sci., 30: 159-163.
- Somasekhara, Y. M., Anilkumar, T. B. and Siddaramaiah, A. L. (2000). Effect of organic amendments and fungicides on population of *Fusarium udum* Butler and their interaction with *Trichoderma* spp. *Karnataka J. Agric. Sci.*, **13**: 752-756.
- Somasekhara, Y. M., Siddaramaiah, A. L. and Anilkumar, T. B. (1998). Evaluation of *Trichoderma* isolates and their antifungal extracts as potential biocontrol agents against pigeonpea wilt pathogen, *Fusarium udum* Butler. *Curr. Res.*, **27**: 158-160.
- Subramanian, S. (1963). *Fusarium* wilt of pigeonpea I. Symptomatology and infection studies. *Proceedings of the Indian Academy of Sciences, Section B* **57**: 134-138.

- Sumitha, R. and Gaikwad, S. J. (1995). Checking *Fusarium* wilt of pigeonpea by biological means. *J. Soils and Crops*, **5**: 163-165.
- Tyagi, S. A. and Alam, M. M. (1995). Efficacy of oilseed cakes against plant parasitic nematodes and soil inhibiting fungi on mung bean and chickpea, *Bioresource Technology*, **51**: 233-239.
- Venkateswaarlu, S., Reddy, A. R., Chauhan, V. B., Singh, O. N., Singh, R. M. and Singh, U. P. (1980). A promising line of pigeonpea (Malaviya Arhar-1) for wilt and sterility mosaic. *Tropical Grain Legume Bulletin*, **23**: 27-29.
- Vishwa Dhar and Chaudhary, R. G. (2001). Disease resistance in pulse crops: Current status and future approaches. In :*Role of Resistance in Intensive Agriculture*. (eds. Nagarajan, S.. and Singh, D. P.). Kalyani Publishers, Punjab, Ludhiana, pp. 144-57.
- Vishwa Dhar, Chaudhary, R. G., Prajapati, R. K. and Mishra, S. (2007). Variability in *Fusarium udum* isolates from Eastern and Bundelkhand regions of Uttar Pradesh. *Abstract of Paper presented during National Symposium on "Plant Pathogens : Exploitation and Management" at R. D. University, Jabalpur (M.P.), India during January 16-18, 2007. <i>Indian Phytopath.*, **60**: 387.
- Vishwa Dhar, Mishra, S. and Chaudhary, R. G. (2006). Differential efficacy of bioagents against *Fusarium udum* isolates. *Indian Phytopath.*, **59**: 290-293.
- Vishwa Dhar, Reddy, M. V. and Chaudhary, R. G. (2005). Major Diseases of Pigeonpea and their Management. In: *Advances in Pigeonpea Research*, Eds. Masood Ali and Shiv Kumar, Indian Institute of Pulses Research, Kanpur, India, pp. 229-261.
- Zote, K. K., Dhandnaik, B. P., Khalikar, P. V. and Olekar, S. S. (1983). Reaction of some pigeonpea lines to wilt. *ICPN*, **2**: 42.

[MS received: November 22, 2012] [MS accepted: December 19, 2012]